If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-28x-6=0
a = 7; b = -28; c = -6;
Δ = b2-4ac
Δ = -282-4·7·(-6)
Δ = 952
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{952}=\sqrt{4*238}=\sqrt{4}*\sqrt{238}=2\sqrt{238}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-2\sqrt{238}}{2*7}=\frac{28-2\sqrt{238}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+2\sqrt{238}}{2*7}=\frac{28+2\sqrt{238}}{14} $
| 3x+9=5x-14 | | 5^n+5^-n=10 | | -28-7r=14 | | 1/3x=7-2/3 | | |2x-30|=|4x-24| | | 1-4=6f+26 | | 14+10y=11y | | -4(7x+10)=-2(14x+20) | | -7-9y=39 | | -5+7x=-5+4(x-3) | | 2(6b-1)=4(b-5)-2 | | 5+57x=159 | | 6c+20=10c-20 | | 8-2x=x-22 | | -3(4-x)=2(4x-14) | | -7(4-r)=-14 | | 1/2(8x+20)=1/3(18x+6) | | 132x+50=360x-120 | | 15x+9=15x+3 | | -3b+5=-5b-9 | | 2(2a+6)=3a+5 | | 5b+2b-14=28-7 | | 2(v+5)=-8+8v | | 25+x/4=150 | | 5-10f=-4f-1-5f | | 13p+p-8p-2p=12 | | 42=7x-21 | | 7-3t=5-t-10 | | h/10-10=100 | | 2x/(2x-1)+5/x=1 | | 8/9x-10/9=2 | | -1-10u=-10-7u |